-R190 887 SUPEICO!IPUTE! PROGRANNING ENVIRONHENTS(U) ILLINOIS UNIV -
AT URBANA CENTER FOR SUPERCO!IPUTING RESEARCH AND
[30 OCT 87 CSRD—‘?}

DEVELOP NT PADUA AL.
UNCLASSIFIED RAFOSR-TR-87-1987 F‘S‘Z.-O‘-C-.i.?‘ G 12/5

LR L PR ML .ll " ‘"‘*»“r’;‘“'.':".‘:‘i W AR R T RTB Y Ya E 3 e e, AT Me s 80 8%, B¥ it Bl b g B op mor ko ke e m s Sy weg b
N : IALAAL N
4 :
P)
L3 . ' ‘
H '.'
"3, .n'
ot o)
,vi,f ’«:.
f
e K
T-‘“ ;’E:
m(! ..t'
(K
.
+
. i
A ne
X *
o bt
dr, b
’1'1 “fl
"l e
» 4 "
A
:‘l"
5'0: ’i.;‘
A il "t 8
o)
oS o8
|‘o. K
A‘I. 'l‘(
L34 :h:'
0
i J
LK) 0y
‘0:9 :‘.‘
!“. .C:g
& e e
N . . i - o
. 1.0 8 S
' Ko u 3 h "l':
= w B g9 »
i ————a ™ - .
o e gl ED) : ! Yt
u" g lw y \i "'.:
“ E : 2‘.0 W] v"‘.g
9 I l [—— B te
. o . LTI N ‘ "ﬁ
':,c = 1.8 M
o — ' - W
. *
N .’?

0./
- m———
o
-
-

-l -,
> 2
M}L#
I\J
01
mﬂ;
S

L
nY ‘'
0 5
P o
o
and i
g
t’;,l :.:.‘
P l‘..
}l »,
o) o
U y
AR 2
B \
e ¢
]
I‘,‘

"
uiy
ay \
1 ’ '
; (
¥ ' ‘
:*]
" 1
158, W
I
(N
() o
u'i:g :i'q
o K
h 2
Ktk o
1 by X
l"‘l "‘I
|" ..'
L} . ; .‘
K

e AT RN 1T g 4y Wy R OO0 WO A W WX P Y AN S ' ;
2480 U LRG0T G 0 e G NS et S R e B 8 potenets!) AOSOO X0 LS LA ﬁ"::’

¥ fai ab do8 4 NG i Tom 2k S p a8 39 Pal Ped’ T Ny : N 5 .
RSO DR X 7 D D R A R R A R N R R R A R A U R A LN S U R R R DR TR R D R L O . R R T I T T e
.
L} -
14

w -
- Al

| ?lf AD-A190 887 >zt vocumenTATION PAGE OTE_FILE Copy -
) a. c 1b. RESTRICTIVE MARKINGS ::j:ﬁ

m %
Lpprova(ﬁ’W\iIlOr A 4
‘ distri.buuommnnsu . %

-

[Pty

-y
L IS

-

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR . TR. 87-1g |

RN

-~
A T w

O
%

%a. NAME OF PERFORMING ORGANIZATION .]6b. OFFICE SYMBOL] 7a. NAME OF MONITORING ORGANIZATION
. The Board of Trustees of the. (If applicable) »
, University of Illinois ' AFOSR/NM N
; 6. ADDRESS (Gity, State, and ZIP Code) - 7b. ADDRESS (City, State, and ZIP Code) ~.:3
} | 506 s. wrighe st. : - ATOsR/mn e 2
¥ | urbana, IL 61801 -} Begaro ' o
. , Bolli fe
8a. NAME OF FUNDING / SPONSORING 85. OFFICE SYMBOL | 9. PRocﬁmw ’
; NAME OF FUNC e stie ICATION NUMBER .
 |aFosR . W F49620-86-C-0136 i
§ 8¢. ADD i ate, and ZIP Cod: . o
I LS e) ;?zoSGoRL:\::E = FU?R%TEGCTNUMBERSTASK WOR X
0 K _UNIT
‘ Bldg 410 ELEMENT NO. [NO. NO. ACCESSION NO. KN
Bolling AFEDC 20332-8448 61102F 2304 A3 P

11. TITLE (Include Security Classification)

Supercomputer Programming Environments o

12. PERSONAL AUTHOR(S)
David A. Padua, Vincent A. Guarna Jr., Duncan H. Lawrie iy

- ul
D e e - -

,. 1P3‘al.b1£r;5 aogirggom 13:;. oTl:nME COVERED ‘o 14, DATcEtOF3 ROEPog; (Year, Month, Day) [1S. PAGE COUNT 3
Y L—Qct J0, 4!
X 16. SUPPLEMENTARY NOTATION g
L v’.‘,
o .
4 +
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) h
“ FIELD GROUP SUB-GROUP i
VIR 0
¥ +
S ¥
;‘I “Y\19. ABSTRACT (Continue on reverse if necessary and identify by block number) :t'
X The quest to apply an ever-increasing amount of computing power to numerical applicatioms has .f
resulted in the evolution of a broad spectrum of ideas and implementations for high perfor- B
,:i mance computing systems. The architectural complexity of these high performance systems u '
/ typically requires special tools and techniques to achieve efficeient utilization of availabl Wt
'f computational resources. These tools range from automatic restructuring and optimizing com- !
4 pilers to interactive debugging and performance analysis systems. The programming environmen ‘iﬁ
N for these systems must be general and adaptive, providing the appropriate level of assistance “‘x
for users of varying levels of sophistication. This paper presents recent developments in Iy
K supercomputer environments, and focuses in more detail on the Cedar Project which is currentl] .
'™ under way at the University of Illinois Center for Supercomputing Research and Developement. :"1
Kay The Cedar Project consists of the construction of a prototype multiprocessor, restructuring :.5
o compilers for the Fortran and C programming languages, and an integrated graphics-based pro- .:‘
i gramming environment intended to serve the needs of scientific applications users. K “.‘
2t

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION \

CJuncLassIFlieDUNLIMITED T SAME AS RPT.] DTIC USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL

. o . 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
(202)767-5026 M’

DD FORM 1473, 8a MAR 83 APR edition may be used untif exhausted. b
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE Y

T

L

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

GENERAL INFORMATION

The accuracy and completeness of all information provided in the DD Form 1473, especially classification and
distribution limitation markings, are the responsibility of the authoring or monitoring DoD activity.

Because the data input on this form will be what others will retrieve from DTIC’s bibliographic data base or may
determine how the document can be accessed by future users, care should be taken to have the form completed by
knowledgeable personnel. For better communication and to facilitate more complete and accurate input from the
originators of the form to those processing the data, space has been provided in Block 22 for the name, telephone
number, and office symbol of the DoD person responsible for the input cited on the form.

All information on the DD Form 1473 should be typed.

Only information appearing on or in the report, or applying specifically to the report in hand, should be reported.
If there is any doubt, the block should be left blank.)

Some of the information on the forms (e.g., title, abstract) will be machine indexed. The terminology used should
describe the content of the report or identify it as precisely as possible for future identification and retrieval.

NOTE: Unclassified abstracts and titles describing classified documents may appear separately from the documents
in an unclassified context, e.q., in DTIC announcement bulletins and bibliographies. This must be considerec
in the preparation and marking of unclassified abstracts and tities.

The Defense Technical Information Center (DTIC) is ready to offer assistance to anyone who needs and requests it.
Call Data Base Input Division, Autovon 284-7044 or Commercial (202) 274-7044.

SECURITY CLASSIFICATION OF THE FORM

In accordance with DoD 5200.1-R, Information Security Program Reguiation, Chapter IV Section 2, para?raph 4-200,
classification markings are to be stamped, printed, or written at the top and bottom of the form in capital letters that
are larger than those used in the text of the document. See also DoD 5220.22-M, Industrial Security Manual for
Safeguarding Classified Information, Section |l, paragraph 11a(2). This form should be unciassified, if possible.

SPECIFIC BLOCKS

Block 5. Monitoring Otganization Report Number(s): Enter

Block 1a. Report Security Classification: Designate the highest
security classification of the report. (See DoD 5220.1-R, Chapters |, {v,
Vi, XI, Appendix A.)

Block 1b. Restricted Markin%: Enter the restricted marking or
warning notice of the report (e.g., CNWDI, RD, NATO).

Block 2a. Security Classification Authorit&; Enter the
commonly used markings in accordance with DoD 5200.1-R, Chapter
v, :ection 4, paragraph 4-400 and 4-402. Indicate classification
authority.

Block 2b. Declassification / Downgrading Schedule: Indicate
specific date or event for declassification or the notation,
“Originating Agency Determination Required” or "OADR.” Also
insert {(when applicable) downgrade to
on (e.g., Downgrade to Confidential on 6 July
1983). (See also DoD 5220.22-M, Industrial Security Manual for
Safeguarding Classified Information, Appendix I1.)

NOTE: E must be made in Blocks 2a and 2b except when the
ﬁgm! report is unclassified and has never been upgraded.

Block 3. Distribution/Availability Statement of Report: Insert the
statement as it appears on the report. If a limited distribution
statement is used, the reason must ﬁ one of those given by DoD
Directive 5200.20, Distribution Statements on Technical Documents,
as supplemented by the 18 OCT 1983 SECDEF Memo, "Control of
Unclassified Technology with Military Application.” The Distribution

Statement should provide for the broadest distribution possible
within limits of security and controlling office limitations.

Block 4. Performing Organization Report Number(s): Enter the
unique alphanumeric report number(s) assigned by the organization
originating or generating the report from its research and whose
name appears in Block 6. These numbers should be in accordance
with ANSI STD 239.23.74, "American National Standard Technica)
Report Number.” |f the Performing Organization is also the
Monitoring Agency, enter the report number in Block 4.

the unique alphanumeric report number(s) assigned by the
Monitoring Agency. This should be a number assigned by a DoD
or other government agency and should be in accordance with
ANSI STD 239.23-74. If the Monitoring Agency is the same as the
Performine Organization, enter the report number in Block 4 and
leave Block S blank.

Block 6a. Name of Performing Organization: For in-house
reports, enter the name of the pe orminqhactivity. For reports
prepared under contract or grant, enter the contractor or the
grantee who generated the report and identify the appropriate
corporate division, school, laboratory, etc., of the author.

Block 6b. Office Symbol: Enter the office symbol of the
Performing Oganization.

Block 6c Address: Enter the address of the Performing
Organization. List city, state, and ZIP code.

Block 7a. Name of Monitoring Organization: This is the
agency responsible for administering or monitoring 3 project,
contract, or grant. If the monitor is also the Performin
Organization, leave Block 7a. blank. In the case of join
sponsorship, the Monitoring Organization is determined by
advance agreement. it can be either an office, a group, or &
committee representing more than one activity, service, or

agency.

Block 7b. Address: Enter the address of the Monitoring
Organization. Include city, state, and ZIP code.

Block 8a. Name of Funding/Sponsoring Organization:
Enter the full official name of the organization under whose
immediate funding the document was generated, whether the
work was done in-house or by contract. If the Monitoring
grgaknization is the same as the Funding Organization, leave 8a

ank.

Block 8b Office Symbol: Enter the office symbo! of the
Funding/Sponsoring Organization.

l_lg!:_ag Address: Enter the address of the Funding/
Sponsoring Urganization. include city, state and ZIP code.

DO FORM 1473, 84 MAR

R A S I S R L SN

C Ry Wad o8 B Tl B Tad R Sl N K Ea® B Tl B gl SR ALD g el LK, gk gl ek R b BB et gl v W B N h Sk B st T FaR b e

Block 9. Procurement Instrument Identification Number: For a
contractor grantee report, enter the complete contract or grant
number(s) under which the work was accomplished. Leave this block
blank for in-house reports.

%&g Source of Funding (Program Element, Project, Task
Area, and Work Unit Number(s): These four data elements relate to
the DoD budget structure and provide program and/or
administrative identification of the source of support for the work
being carried on. Enter the program element, project, task area,
work unit accession number, or their equivalents which identify the
gjncipal source of funding for the work required. These codes may

obtained from the applicable DoD forms such as the DD Form
1498 (Research and Technology Work Unit Summary) or from the
fund citation of the funding instrument. If this information is not
available to the authoring activity, these blocks should be filled in by
the responsible DoD Official designated in Block 22. If the report is
funded from multiple sources, identify only the Program Element
and the Project, Task Area, and Work Unit Numbers of the principal
contributor.

11. Title: Enter the title in Block 11 in initial capital letters
exactly as it appears on the report. Titles on all classified reports,
whether classified or unclassified, must be immediately followed b
the security classification of the title enclosed in parentheses.
report with a classified title should be provided with an unclassified
version if it is possible to do so without changing the meaning or
obscuring the contents of the report. Use specific, meaningful words
that describe the content of the report so that when the title is
machine-indexed, the words will contribute useful retrieval terms.

If the report is in a foreign language and the title is given in
both English and a foreign language, list the foreign language title
first, followed by the English title enclosed in parentheses. If part of
the text is in English, list the English title first followed by the foreign
language title enclosed in parentheses. If the title is given in more
than one foreign language, use a title that reflects the language of
the text. if both the text and titles are in a foreign language, the
title should be translated, if possible, uniess the title is also the name
of a foreign periodical. Transliterations of often used forei'gn
alphabets {see Appendix A of MIL-STD-8478) are available from DTIC
in document AD-A080 800.

Block 12. Personal Author(s): Give the complete name(s) of the
author(s) in this order: last name, first name, and middle name. In
addition, list the affiliation of the authors if it differs from that of
the performing organization.

List all authors. If the document is a compilation of papers, it
may be more useful to list the authors with the titles of their papers
as a contents note in the abstract in Block 19. If appropriate, the
names of editors and compilers may be entered in this block.

Block 13a. Type of Report: indicate whether the report is
summary, final, annual, progress, interim, etc.

Block 13b Time Covered: Enter the inclusive dates (year,
, day) of the period covered, such as the life of a contract in a
final contractor report.

Block 14 Date of Report: Enter the year, month, and day, or
the year and the month the report was issued as shown on the cover.

Block 15. Page Count: Enter the total number of pages in the
report that contain information, including cover, preface, table of
contents, distribution lists, partial pages, etc. A chart in the body of
the report is counted even if it is unnumbered.

16 Supplementary Notation: Enter useful information
abo e report in hand, such as: “"Prepared in cooperation
with...,” “Translation at (or by)...,” “Symposium...” If there are
report numbaers for the report which are not noted elsewhere on the
form (such as internal series numbers or participating organization
report numbers) enter in this block.

M}- COSATI Codes: This block provides the subject
coverage of the report for announcement and distribution
purposes. The categories are t0 be taken from the “COSATI
Subject Category List” (DoD Modified), Oct 65, AD-624 000. A
copy is available on request to any organization generating
reports for DoD. At least one entry is required as follows:

Field - to indicate subject coverage of report.

Group - to indicate greater subject specificity of information
in the report.

Sub-Group - if specificity greater than that shown by Group
is required, use further designation as the numbers after the
period () in the Group breakdown. Use only the designation
provided by AD-624 R

Example: The subject "Solid Rocket Motors” is Field 21,
Group 08, Subgroup 2 (page 32, AD-624 000).

Block 18. Subject Terms: These may be descriptors,
keywords, posting terms, identifiers, open-ended terms, subject
headings, acronyms, code words, or any words or phrases that
identify the principal subjects covered in the report, and that
conform to standard terminology and are exact enough to be
used as subject index entries. Certain acronyms or “buzz words”
may be used if they are recognized by specialists in the field and
have a potential for becoming accepted terms. "Laser” and
“Reverse Osmosis” were once such terms.

If possible, this set of terms should be selected so that the
terms individually and as a group will remain UNCLASSIFIED
without losing meaning. However, priority must be given to
specifying proper subject terms rather than making the set of
terms appear "UNCLASSIFIED.” Each term on classified reports
must be immediately followed by its security classification,
enclosed in parentheses.

For reference on standard terminology the “DTIC Retrieval
and Indexing Terminology” DRIT-1979, AD-A068 500, and the
DoD “Thesaurus of Engineering and Scientific Terms (TEST) 1968,
AD-672 000, may be useful.

Block 19. Abstract: The abstract should be a pithy, brief
{preferably not to exceed 300 words), factual summary of the
most significant information contained in the report. However,
since the abstract may be machine-searched, all specific and
meaningful words and phrases which express the subject content
of thg rdeport should be included, even if the word limit is
exceeded.

if possible, the abstract of a classified report should be
unclassi'ﬁea and consist of publicly releasable information
(Unlimited), but in no instance should the report content
description be sacrificed for the security classification.

NOTE: An unclassified abstract describing a classified
document ma! iFECI‘ separately from the document

N _an unclas context e.g., in announceme:
or 'BEW_EEK @u«s !gcls must % cons%erg m
epara and marki unclas: abstracts.

For further information on preparing abstracts, em oning
scientific s¥mbols, verbalizing, etc., see paragraphs 2.1(n) an
2.3(b) in MIL-STD-8478B.

Block 20. Distribution / Availability of Abstract: This block
must be completed for all reports. Check the applicable
statement: "unclassified / unlimited,” “same as report,” or, if the
report is available to DTIC registered users * DTIC users.” :

Block 21. Abstract Security Classification: To ensure proper
safeguarding of information, this biock must be completed for all
reports to designate the classification level of the entire abstract.
For CLASSIFIED abstracts, each paragraph must be preceded by its
security classification code in parentheses.

llg%l(nl’b.g. Name, Telephone and Office Symbo! of
Responsible Individual: Give name, telephone number, and
office symbol of DoD person responsible for the accuracy of the
completion of this form.

B [T L S e 4 Y .
Vo e e e Qe Tt T s S S SRR NS

DO FORM 1473, 84 MAR

»
-8

WU.S. Gevernment Printing Ofien: 1000—420-070/1 3008

- " ym
o AT R G R o AL

. P Y,
LWL LRGN GLGR AL LW G

CSRD report no. 673

AFOSR-TR- 87-1987

i Center for
Supercomputing Research and Development

5 Supercomputer Programming Environments
b

‘ David A. Padua
) Vincent A. Guarna, Jr.
Duncan H. Lawrie

"S June 9, 1987
o

o University of Illinois at Urbana—Champaign
b 104 S. Wright Street

N Urbana, Illinois 61801

‘sr (217) 333-6223 %uicsrd@a.cs.uiuc.cdu

R Version: 2884-June 9, 1987
A Produced: Tue Jun 9 18:15:84 CDT 1987

88 1 5 040

oYy 1 WAL N0 (R IS
SO0 G0y 0 SN OO N O TN T b AT o TR AR DX OCEOON

OUTLINE

1 ABSTRACT cernenene cevereeeeenensennne ceerseressaneannes teerenereserancesases rererseseneenseesssnnnnans 1
2 INTRODUCTION .uieriiitieciienneernessostsesssseesscnsessssnsesssessssessaserases reresnnsasansronee cevenans 1
3 ISSUES IN PARALLEL PROGRAMMING LANGUAGES rerrssesentnnnessrannsnnns 3
4 STATE-OF-THE-ART PROGRAMMING TOOLSccceveeerenes coreneonns cecrrseseeerenes 8
Restructuring and Interactive Restructurers ..cccceccovveceveveenceenens crerererneenoronne ceeerene 8
Debuggerscccceceruenenen erenreeerasesenssssteatisessttetanesstriserassansrastseranas cerseseraneensressrnssane 13
Performance Evaluation teeerrenanssessseannes ervesteeternnnsecearessenanenessaranans tereseveseannnene 16
Integration restresenseseseannensenes rresteteetesensrarerarastessnrearesnasnassnnnsannens eeereneen 19
5 ACKNOWLEDGEMENTcccceeeeuns ceereranesans eteseetettraseeeertenseseennstiesernsessanessssannnnen 2
6 REFERENCES ererreseeeanasessessenesasassten teertensstrrensenernsneaasses terencesteensecessnnnnns 22

Accesion For

=<

DTIC TAB

Unannounced

Justification

By camemcemaiaia..

Distibutionf
Avail; ,r,,-o’y (:"eo

o eem— s amana

i ,A @ zadior
D|bt r-'ccc_' ‘

Al | .

i

' %
. 8
i

CSRD report no. 673 o

Supercomputer Programming Environments ‘-

David A. Padua s

Vincent A. Guarna, Jr. “.z

Duncan H. Lawrie &

5

June 9, 1987 N

L

'."

Abstract Wy

(D

Thc quest to apply an ever-increasing amount of computing power to numerical applica- c::f
viis has resulted in the evolution of a broad spectrum of ideas and implementations for ',:u;
high performance computing systems. The architectural complexity of these high perfor- "
mance systems typically requires special tools and techniques to achieve efficient utiliza- o
tion of available computational resources. These tools range from automatic restructuring fj_‘;j
and optimizing compilers to interactive debugging and performance analysis systems. The "
programming environment for these systems must be general and adaptive, providing the :ﬁi
appropriate level of assistance for users of varying levels of sophistication. This paper ‘

presents recent developments in supercomputer environments, and focuses in more detail
on the Cedar Project which is currently under way at the University of Illinois Center for

intended to serve the needs of scientific applications users.

Supercomputing Research and Development. The Cedar Project consists of the construc- ::.j
tion of a prototype multiprocessor, restructuring compilers for the Fortran and C pro- ::f
gramming languages, and an integrated graphics-based programming environment '.

Keywords: scientific computation, parallel computation, parallel languages, vector :::
languages, programming environmenls, optimizing compilers, parallel debuggers ::sf»
W

Wy

This paper will appear in the Proceedings of the Symposium on Parallel Computations :;:5
and Their Impact on Mechanics, to be held at the ASME Winter Annual meeting in Bos- \::‘,.:
ton, December 13-18, 1987. ::ff
L

o

vt

o

‘I‘I

) 3,

5

§i|

gt

i

Q;“

W

W

) |

This work was supported in part by the National Science Foundation under Grant Nos. ¢

US NSF DCR84-06918 and US NSF DCR84-10110, the US Department of Energy under Grant No. o
US DOE DE-FG02-85ER25001, the United States Air Force under Grant AFOSR-85-0211 and by a donation :(:j
from the IBM Corporation. :::-
(N

2384-1 M)

\}
D ; n p N N
R R Ot OO S M MO O R M T R IO O M N i RO AR M A MO T M FOL LM R A MO MM e R]

N N vl 4t o4 TS -~ [T vy By 863 oV a1k gip ha pth b LR mt i ooty gNE Vi g4 gt 37
G At L ev s SyptiatE aE b it ettt g gl U WL

“wy 1 ABSTRACT

R The quest to apply an ever-increasing amount of computing power to numerical applica-
Y : tions has resulted in the evolution of a broad spectrum of ideas and implementations for
& high performance computing systems. The architectural complexity of these high perfor-
mance systems typically requires special tools and techniques to achieve elficient utiliza-
& tion of available computational resources. These tools range from automatic restructuring
: and optimizing compilers to interactive debugging and performance analysis systems. The
) % programming environment for these systems must be general and adaptive, providing the
:'. appropriate level of assistance for users of varying levels of sophistication. This paper
presents recent developments in supercomputer environments, and focuses in more detail
‘ on the Cedar Project which is currently under way at the University of Illinois Center for
Supercomputing Research and Development. The Cedar Project consists of the construc-
W tion of a prototype multiprocessor, restructuring compilers for the Fortran and C pro-
W gramming languages, and an integrated graphics-based programming environment
:I' intended to serve the needs of scientific applications users.
2

oy 2 INTRODUCTION
‘ . . - . »
. Present supercomputers! require vectorization of codes to achieve anywhere near their
- performance potential. Additionally, on some machines, vector registers must be carefully
) managed to avoid as much memory access as possible lest memory access become a
"t y
¢ bottleneck. This must all be done while managing disk I/O which is vastly siower than
4.
‘l
:s., ' In this paper we use the word supercomputer to refer to the fastest general-purpose scientifie comput.
;,“S ers, e.g., machines like the Cray X-MP, Cray 1I, CDC Cyber 205, ETA 10, Fujitsu Facom VP, Hitachi 3.
4,

810, and NEC SX. These machines can have at least several processors all sharing a common memory.
Other machines, for example NCUBE, hypetcube, ete., have many processors and a distributed (unshared)

-"\') memory. These latter machines are striving for ‘““super’’ status, and indeed some of these can provide super-
“n:' computer performance on certain applications. However, our expertise lies in the former area and we will
‘ﬂ_' not address the latter machines.

Yot

LK

N
} l‘|

A - v s (G TR0 . T8 x O O
‘.“v' VAT A e t’..n'\ l'|‘l‘~ I3 ‘\'l'a .-.l.n.!.t.l) .I“‘lh‘l."'("!."‘ .“l.'.', 'l."h"h b LI LB NN Y b Y Y ».l'?.l LN ..'t.!‘l...o..'l N Y X NN !‘l A P PN "l O]

P hnopra e g Ca b Bt 8% 6ad £F B AR B R om e bowotomo gty
RTINS T | R T T TN T T R R T R LI N TS S TCar P TUM TP U Y [RIS

l’;
. o
]
|'::
z ;
.
. :‘1
f ¢
o
§e
the processor and I/O from some form of bulk random access memory. :::
The next generation of supercomputers will be even more complex than present super- ’0:
computers. Machines with multiple processors are already in the field. This will be the ‘.:s
primary characteristic of the next generation of supercomputers—multiprocessing>—but :'e‘.
more so. Yet techniques for using multiprocessors are poorly understood today. Not only |'.§!
do programs need to be rewritten as they were for vector machines to capitalize on perfor-]
mance gains available from multiprocessors, but often the algorithms themselves must be 50
redesigned to allow multiprocessing. Optimizing compilers are just beginning to do a '::’
credible job of vectorization. They are a long way from being able to restructure a pro- ’:0;
gram to use multiprocessors effectively, a process we call parallelization. Further, the :|:|
| design of parallel algorithms is still a relatively new art. 5:’.:
’ Multiprocessing leads to other difficulties as well. Programming multiple, asynchro- N
nous tasks is probably an order of magnitude more difficult than what most of us are used ,
to programming--a single execution stream. Once we start using multiple execution .:‘:
streams, we must be careful about cases where multiple streams access the same data. ¥9ff
Where data access by multiple execution streams might cause a problem, we must use :O;
some form of synchronization. And in machines lacking a shared memory, data must be :1:%
explicitly moved from processor to processor (or sometimes, rather than moving the data, ‘,:
in effect the program is moved from processor to processor). 'i
Debugging parallel programs is also an order of magnitude more difficult. For exam- ~ 1
ple, most errors are not easily reproduced because the exact time ordering of the multiple ..:l
execution streams will vary from one run to the next. Thus, errors caused by poor con- M:
ceptualization of the synchronous/asynchronous nature of the program are not only the r:‘:e
easiest errors to m: ke, but the most difficult to find and reproduce. ‘i:|:
Memories will also increase in complexity. For example, many new supercomputers W
will of necessity use cache memories to better match the processor and memory speeds. ',
Consider, however, the effect of vectorization on cache memories. When a program is vec- :u‘:"
torized, the result is usually statements that compute on whole vectors at a time. Often .::%
each vector in such a statement is only accessed once. Yet, if the vector is long (and the ‘O:
longer the better for performance), then it may have the effect of flushing the cache. .:;
Already, we see several common optimizations at odds. This same phenomenon adversely .’:J
affects the locality of programs in machines which have paged memories. But the com- .
plexity does not stop there. New machines are likely to contain some mixture of local <
memories (memory accessible by only one processor) and shared memory (memory shared) Y,
by some or all of the processors). To get the full potential performance of these machines, ‘:0
data must be carefully allocated in the best memory depending on its access characteris- ":
tics. Often this allocation must change during the execution of the program. ‘Q:! .
Add to all this the increasing disparity between processor speed and I/0 speed, and we 2920',
have even greater need for complexity in how I/O is handled. This in turn necessitates
multitracked I/O (streaming data to or from nultiple disks simuitancously,) disk caches, KoR
and bulk random access memories. |:I:g
It is perhaps ironic that in this age of the microprocessor and personal computer, when ‘.."il
software is finally becoming easy, perhaps even fun to use, supercomputers are becoming .‘Q:Q
more difficult to use. \We must see to it that this does not happen. Better programming ':"t‘
environments are nceded— compilers, languages, debugging and performance tools--if we %
are to make use of the tremendous potential offered by supercomputers.
o
3 We define multiprocessing to mean the use of more than one processor on one job. This is sometimes l'|:1
called multitasking, and the term parallel processing has also come into vogue to mean !.he same thing. '{"h'u .\‘:
is different from vector proeessing, which means computing on vectors, usually with a pipeline processor like ‘ﬁ‘
the Cray series, I"‘l
'll‘
;a
N
0:"t
() l‘,
o
A
"i.;'
.:::
'a‘.(

Y OO0 3 (..""
DRSSO O OAAOBOANEBIN I OEBODUE OO M OGO O O O O O N O O U S X N R N N T S AR AR OO

4t oAb w oAl Tad AK€ ap o ok Vel VAl Cau drd v B €0 M85 8" Gt 0 A A RTE A Rt ph ot gid gtk gl

3 ISSUES IN PARALLEL PROGRAMMING LANGUAGES

Several approaches are possible in the design and selection of programming languages
for parallel processing. In this section we will discuss Fortran and its extensions. A few
remarks will be made at the end on alternative languages.

Fortran will be emphasized due to its predominance. It is safe to say that most of the
application code for parallel scientific computers is ia the form of numerical programs
written in Fortran, and that this situation will continue in the near future. Supercomput-
ers use either an optimizing compiler or Fortran extensions to exploit both vector and

asynchronous parallelism. We will discuss these two forms of parallelism next, starting
with vector parallelism.

Some vendors use standard sequential Fortran and rely on the compiler to exploit vec-
tor parallelism. These compilers include a vectorization phase where regular do loops are
internally transformed into vector assignment statements. To give the programmer con-
trol over what is vectorized and how, these Fortran compilers all accept some form of vee-
torszation commands supplied via comment cards. Also, a programming style may be sug-
gested to the programmer to help the vectorizer.> The main advantage of using standard
sequential Fortran is portability. Thus, Fortran programs (even if they were not written
for supercomputers) can often be efficiently run on a new supercomputer either without

change or with the addition of a few compiler directives with vectorization commands for
the new machine.

Another possible approach to exploit vector parallelism is to extend Fortran with vec-
tor assignment statements. Four types of constructs have been used for vector assignment
statements. The first construct, control vectors, was used by two early vector languages:
the Burroughs Illiac IV Fortran (Ref. 11), and Glypnir (Ref. 33). The latter language was
also designed for the Illiac IV, and while it was based on Algol, its control structures could
be trivially incorporated into Fortran. Control vectors were boolean vectors used to con-
trol vector operations. Burroughs Iiliac IV Fortran used control vectors as array sub-
scripts. A * denoted a boolean vector with all elements set to true. Thus,

Real A(100), B(100)
A(*) = B(*) + A(M) (1)

added corresponding elements of arrays A and B and assigned the result to array A. On
the other hand,

do 10 i = 1, 100, 2

M (i) = .true.
M (1+1) = .false. (2)
10 continue

A (M(*))=BM((M)) ~AM(*))
did the same thing but only for the odd elements of A and B.

In Glypnir control vectors had 64 elements, one for each Illiac IV processor (PE), which
were used to control whether a processor was to cexeccute or remain idle. Variables in
Glypnir could be declared to be of the pe type; this specilied that there would be a copy
of the variable on each processor. To illustrate these ideas consider the following pro-
gram:

* For example, the Cray CFT manual suggests: "Keep subscripts simple and cxplicit; do not use
parentheses in subscripts.”

b . - Y 0] ™, 'y B ¥]
R OGO M U At e DA OO I T U O SO K AN T AU U s N g 2 T W OO O N

Y TR I TR T I N

. - - ok WA T . ETaE] T G T
o) R T T U IR R PO T R R NUNURU U MU WU N U W UL Y N XN g%, gt gt pti gthati gth ettt ettt ety
TR T P S T T W, R . o ;

¥
't
. 2
4
4 x
h
. &
. NQ:
<
5
'
.
pe real x,y.z ";‘
.. (3) N
for all z < Odo x =y +1 :‘
This program specified that x, y and z were 64 element arrays, and that for 1 < 1 < l:
: 64, y(i) + 1 was to be assigned to x (i) whenever z (i) < O. In the for all (:,
' statement, the ith element of the control vector had the boolean value 'z (i) < O ‘
The language IVTRAN, also developed for the Illiac IV, introduced a second type of %,
. construct: do for all (Ref. 38). This construct specified the subscripts to be used in v
i the vector operation. Thus,
'
do 10 for all i =1, 100, 2 "'
10 A(i) = B (i) + A (i) (4) o
' operated in vector form on the odd elements of A and B as was done by loop (2). The .
do for all index was not limited to a single dimension. Thus, "
, real A(100. 50) :!
) do 10 for all i = [1, 100].c.[l, 50] (5) W
; 10 A(i) = A(1) + 1 ‘o;
v
added one to each element of the 100 x 50 array A. (The .c. means Cartesian pro- :.‘
. - . . y)
duct, and i represents a pair of integers <j,k> where j € {1,100} and k € [1,50].) A con- .
strucy similar to do for all was present in early versions of the Fortran 8X (Ref. 37)
draft standard but has been removed. "A‘
The last three vector constructs we will discuss are the ones presently adopted by the .";
Fortran 8X proposal. These were originally developed as part of Vectran (Refs. 42 and l.:,
43), an extension to Fortran developed at the IBM Houston Scientific Center. The basic :‘(
construct is the vector assignment statement based on triplets, three integers separated by |:0"
colons that specify beginning subscript, ending subscript, and stride.! Thus, .
W
A(1:100:2) = B(1:100:2) + A(1:100:2) (6) ‘
performs the operation and assignment on the odd clements of A and B and is equivalent ﬁ.ﬁ
to loops (2) and (4). The triplet notation is complemented with the identi fy statement it
used for the selection of array sections like matrix diagonals (which cannot be expressed :.:(
via triplets), and the where statement used to perform conditional vector element assign- .‘)‘,
ments.

The adoption of Fortran 8X will make use of vector constructs more common. How- it
ever, this will not rule out vectorizing compilers as will be discussed below. Both vector t
constructs and vectorization will probably coexist as they do today in, for example, Alli-
ant Fortran (Ref. 5). .

-

A second class of constructs are those used to express asynchronous parallelism. In

. . . .]
what follows, we will discuss Fortran extensions assuming shared memory (sce footnote 1), Y
Iixtensions to Fortran for systems without shared memory should typically involve just a
few intrinsic routines for message passing and synchronization (see, for example, Ref. 2). Ny
. - . . 4
Multitasking constructs are the more traditional ones. Generally there ig some kind of }‘g
tork, process, or co-begin statement that causes the start of a new execution ‘!.

stream that can exccute in parallel with the original stream. We call this new stream a

)
process. Note that the number of processes started may far exceed the number of proces- 3
sors available for parallel exeeution. [However, this only influences performanee, sinee in i
muititasking the operating system automatically muitiplexes processors and therefore =

sives the illusion of the availability of an unlimited number of processors.

¢ Stride is the distance hetween successive array elements.

RGN o '\‘-‘ ‘ (L ,~|°. ‘ "*' f’ -v e, . AL

TR -

N

IR 0 n Y 3
‘J.'v’{‘l‘-’o‘. [T ALY l'{,l".l't

¥ 0 l.l."

When multitasking is implemented in software,® there can be a substantial amount of
overhead involved in setting up a new process because storage must be allocated, ete.

Thus, if the granularity of the task® is small, i.e., if the amount of work to be done by the
process is small, then the overhead of allocating a new process may overwhelm the useful
work done. To get around the high overhead of process allocation, especially when the
tasks are small, microtasking is sometimes used. With microtasking, it is not necessary to
allocate a complete new process for each task. What usually happens is that the number
of processes started is equal to the number of available processors. Then each process will
be assigned one task but no multiplexing will be done. In other words, the task will
remain associated to the process until it is completed, thus saving some of the overhead
associated with process allocation. Remaining tasks are allocated to processes only when a
process becomes available by virtue of having finished a task. This assignment of tasks to
processes is done by the user (or perhaps the Fortran run-time support library).

Microtasking can cause problems, however. In the case of multitasking, each task has
a process. If any process (and thus task) is blocked, then that process is suspended and
the operating system automatically switches the processor to any other ready process. For
example, suppose we have three tasks, a, B, and <y, and three processes @, b, and e.
Further assume that there are only two processors and they start executing processes a
(with task a) and b (task B.) If b gets blocked for some reason (for example, waiting for
1/O or waiting for a signal from task <), then b is suspended which releases a processor
and allows process ¢ to begin.

Now, suppose we are microtasking. Further suppose that there are two processors
again, that the user has asked for two processes, z and y, and that task « is assigned to
process , task A is assigned to y and task 7 remains unassigned. Now if 8 is blocked
waiting for a signal from <y and simultaneously « is blocked waiting for a signal from g,
then we have a condition known as a deadlock — £ and a cannot finish because they
need a signal from <y, but -y can never signal because -y cannot start until either & or £
have finished. Thus we have a case where, if we allocated a distinct process to each task,
no deadlock occurs, whereas if we do microtasking and the number of tasks is greater
than the number of processes, we can get a deadlock. Of course, the user (or support
library) can design a more clever microtasking system, but this will likely increase the
overhead and thus defeat the original reason for microtasking.

Microtasking systems allow only restricted types of synchronization, for example, crsti-
cal regions and cascade synchronization. The reason for this restriction is to avoid
deadlock situations like the one discussed above. Assume that sections of code in different
streamns may be identified with a name. The critical region mechanism guarantees that no
two processors will be inside a critical section with the same name at the same time. In
this case, we say there is mutual exclusion. lFor caseade synchronization it is assumed that
if a task 7 signals another task g, then a process will be allocated to 7 before it is allo-
cated to M.

In an attempt to clarify these ideas, we will now discuss loop parallelism. A parailel
loop whose iterations contain no synchronization across iterations (except for critical see-

B NMultitasking is almost always implemented in software. Ihe only exception we know of is the Denel-
cor HEP (Refs. 48 and 29) where the implementation was in hardware. This made multitasking fast enough
to be used to start parallcl loops, and obviated the need for ticrotasking.

® In some contexts task is considered a synonym of process. Iere the word task will mean an activity to
be preformed by a process. This activity may be, for example, to execute a statement, a group of state
ments, of one iteration of a loop.

- - -y -~ B PR P AT AT "
b AV e PO Lt Lo S ‘o!l'-.l‘l. o,l'o ™ bl- 8 'L.""(e .‘J' " ’ MW V " . .. -.a..'«

TN 5
‘s
ol

e

2
e e -

)™ Y-

S S S S o)

TN

RIS D O O N A ';f

\ e) .
P R S R IV R VNN O RA AN AN "t:" ¥4 g bg b

tions) is called a doall” loop. The defining characteristic of doall loops is that their
iterations may be executed in parallel and that processors may be allocated to iterations
in any order. An example of such a loop is the following:

doall i=1l,n

B(i) = A(1)
do while (B(i)**2-A(i) .gt. epsilon)
B(1)=(B(i)+A(1) /B(i))/2.0 (7)
end do
end doall

Iteration i of this loop computes the square root of A (i) using Newton-Raphson, and
assigns it to B (i) (we assume that A (i) > 1).

Doall loops should not be synchronized in such a way that a certain number of pro-
cessors or a certain processor allocation order would be required for correct execution.
For example, the loop:®

semaphore S(:)

V(sS(1))
v(T(1))
doall i=1l,n

P(s(1))
A(i)=A(i-1)+1 (8)
V(S(i+1))

P(T(1))

B(1)=B(i-1)~A(L)

V(T(i+1))

end doall

is invalid since iteration i > 1 cannot start execution until iteration i-1 has started, and
this imposes an order on processor allocation. Thus, if only two processors were available
at run time, and they were allocated to iterations 2 and 3, the program would never com-
plete since iteration 2 cannot start until semaphore S (2) is incremented in iteration 1.
Parallel loops where iterations wait for synchronization signals from previous iterations
happen with some {requency. For these types of loops, the doacross construct can be
used. This construct requires that processors be allocated first to carlicr iterations. Thus,
the previous loop with the doall keyword replaced by the doacross will be correct.

Another example of Jdoacross is obtained by transforming the loop:

T From IFMP Fortran (Ref. 13), which used a generalized version of IVTRANS

2D tar Al vector
construct.

* In this loop, P and V are the well known synchronization operations. These operate on semaphotes.
The P (5) operation tests the semaphore 3 and if its value is greater than zern, it decrements . and
proceeds. If 5 is zero, the process waits until a V (3) operation is exccuted. The V(S) operation checks
whether there are processes waiting on semaphore S; if so0, it allows one of them to proceed; otherwise,
YV (3) increments S by one. A fundamental characteristic of these operations is {IRef. 19):

P- and V.operations are "indivisible actions”; t.e. if they occur “simultanecously’ in parailel processes
they are noninterfering in the sense that they can be regarded as besng performed one cfter the other,

, S
W SOOI,

[XANSL

LAY SIS ADE

do i=1,N
do j=1,M
U(i,j)=U(i-l,j)+U(i,j)+U(i+l,j)+U(1,j-1) (9)
ond do
end do

into the following parallel equivalent:

semaphore S(:, :)

doacross i=1,N
do j=1,N
if (i.re.l) P(S(i.]))
U(i.3)=U(L-1.3)+U (i, j)+U(i+1.3)+U(i.3-1) (10)
V(S(i+1.]))
end do
end doacross

Doall loops can have synchronization instructions in their bodics as long as they do
not require a particular allocation order or a minimum number of processors. This will be
the case when the synchronization instructions are those used to create critical sections.
For example, the loop:?

do i=1,N
A(K(1)) = A(K(1)) + 1
end do
is equivalent to the loop:

semaphore S(:)

doall i=1,N
P(S(K(1))
A(K(1)) = A(K(1)) + 1
V(S (K(1))

end doall

Besides loop parallelism, microtasking has also been used for straight line parallelism
when the execution time of cach segment is relatively short.

In Table 1, a summary of the main features of several parallel Fortran dialects is
presented. Fortran remains predominant as the supercamputer programming language.
However, there is no lack of advocates for other languages. Foremost among the con-
tenders are the functional languages: these include FP (Ref. 7), ID (Ref. 39), VAL (Ref. 1),
SISAL (Ref. 36), and ParAlll (Ref. 27). In functional programming there is no global
state being modified by the program, but only functions mapping input values onto out-
put values. Some have claimed that these languages are more appropriate for parailel
processing due to the lack of side etfects. Ilowever, as far as we know, there is today no
high-quality implementation of any of these languages that can successfully compete with
Fortran in the genecration of cfficient object code for supercomputers.

®Notice that in this loop, if several iterations operate on the same element of 2, as happens when
several elements of ¥ (i) are equal, the order in which the iterations are done is not imnportant since cach
iteration sinply adds one to an clement of A. However, it is important that no two iterations operating on
the same element of A be done in parallel or the effect of somne of these iterations will be lost. This sequen-
tialization is taken care of by the next loop.

(]

e o X SRR

R . ‘™ L) ‘)
IO I U R B A S WO ...I."I*I. ‘l’n‘l‘t‘l’ l‘._l‘q b i h :l'.‘ ~l‘|. ALGERTAN WM ™ m LM et

Lazguage Document | Vector Assignment | Vectorizing T Multitasking Microtasking i
_ i Da‘e : Statements Compiler ; |
Lhac IV FORTRAN | 1971 | Control Vectors NO NO NO i
e 11) ! ; :
_Giypaur (Ref 33) L1972 Yes NO NO i
(VTRAN (Ref 38) ;1973 | DO FORALL YES NO NO !
Vectran i 1575 Triplets NO NO NO i
i (Rel. 42) ' IDENTIFY . '
! ! WHERE !
i BSP FORTRAN i 1975 Triplets YES NO NO :
(itef. 12) ‘ IDENTIFY i
t ! WHERE .
'HEP FORTRAN b 1978 i NO NO Hardware NO |
! (Ref_29) ’ Supported f
"FMP FORTRAN | 1979 NO NO NO Hardware Supported |
‘(Ref. 13} ! No Syaschromization !
i FORTRAN 8X | 1987 Triplets N/A NO NO |
1 {Ref. 37) ‘ IDENTIFY |
! ‘ WHERE
1 Fuptsu FORTRAN 1985 | NO YES NO NO !
" (Ref_20)
Convex FORTRAN 1985 NO YES __: NO NO
"IBM VS FORTRAN [1985 ' NO YES NO NO
(Ref. 453} | :
; Cray CFT % 1980 ! NO YES Cray Software Supported
C{Ref._15) : Primitives Critical Regions
{Alliant FORTRAN | 1985 | Triplets YES UNIX Hardware Supported -
i {Ref. 3) { | Primitives Cascade Synchronizaton |
1 | | {Impliait)
; “equent FORTRAN 1085 : NO - UNIX Software Supported
+ (Ref. 40) | i Primitives Critical Regions i
i : | _Cascade Svncrhonization .

"EPEX/FORTRAN | 1585 NO - ‘ Software Suppotted §
L(Ref. 50 ! i Rarrier Synchropization !

Table 1 Characteristics of Fortran Implementations

An area not widely explored so far is that of parallel symbolic computing. We believe
that much more will be done in this area in the future. For this type of programming,
parallel versions of Lisp (Refs. 21, 24 and 49), and Prolog (Refs. 15 and 47) are being
developed. Also, some compiler techniqies to parallelize Lisp programs have been
developed (Refs. 25 and 26).

4 STATE-OF-TIHE-ART PROGRAMMING TOOLS

Restructuring and Interactive Restructurers

As we discussed above, many supercomputers include software for automatically
extracting parallelism from what was originally sequential code. We will start this scction
by presenting several examples of parallelization. One of the simplest transformations is
the one that can be performed when all iterations are independent of each other. The
way to determine whether the loop iterations are independent is by computing a duta
dependence graph. \We will not define this graph here; more information on dependence
graphs and program parallelization may be found in Refs. (30) and (11). In this paper we
will limit ourseives to a few examples of transformations.,

All iterations in the following loop are independent:

-

- - -
-

R

- e

do i=1,n
if (A(L) .gt. O) then
B(i) = Cc(i) + D(4) (13)
E(i) = F (i)
end if
end do

and therefore it can be transformed to:
where (A(l:n) .gt. O)
B(1:n) C(l:n) + D(1:n)
E(1:n) = E(1:n) (14)
end where

[t

or to:
doall i=1,n
if (A(i) .gt. O) then
B(i) = C(i) + D(i)
E(i) = F(1) (15)
end if
end doall
or to:

doall i=1,n.K
m = min(i+K-1,n)
where (A(i:m) .gt. O)
B(i:m) = C(i:m) + D(i:m)
E(i:m) F(i:m) (16)
end where
end doall

Parallelizing loops is possible even when loop iterations are not independent — paral-
lelizing compilers could transform do loops into doacross loops by inserting the
appropriate synchronization instructions. For example, a parallelizing compiler could
transform do loop (9) to doacross loop (10).

Sometimes secondary transformations are necessary before a loop can be parallelized.
For example, the loop:

do i=1,n

A = B(i) + C(1)

D(i) = A + 1 (L7)
end do

cannot be parallelized because all iterations use the variable A to store intermediate
values.

A transformation called scalar erpansion will make the iterations of the previous loop
independent by changing A into an array:

do i=1l,n

AX (1) = B(i) - C(i}

D(i) = AX(i) - 1 (1)
end do
A = AX(n)

Another important secondary transformation is loop interchanging. This transforma-
tion makes it possible to map either of the following two doubly-nested loops into the
other:

"l."l‘.!-‘.l.‘ »

1w

LI

AR PN T R AP0 SA PAA TN

CAAPLTSRENR) W W S WV AT TV WU WA NN AR PO WA K T TR DR NN
do i=1,n
do j=1.n
Ali.3) = A(i,i-1) -1 (19)
end do
end do
do j=l.n
do i=1,n
AL,]) = A(i.j-1) + 1 (20)
ond do
end do

If the input loop is the first one above, and the target machine is a vector machine, the
compiler will first transform the first loop into the second and then vectorize the inner
loop.

On the other hand, if the input loop is the second one and the target machine is a mul-
tiprocessor, the compiler will first transform the second loop into the first loop and then
transform the outer loop into a doall loop. This is done to pay only once the overhead
involved in starting the doall loop.

The final secondary transformation we will discuss is blocking. This transformation is
used mainly for memory management. For example, assume a vector machine where all
arithmetic machine instructions are register-to-register, and that the vector registers are
32 words long. The loop:

do i=1l.,n

A(i) = B(i) -+ C(i) (21)
end do
can be transformed into:
do i=1,n,2
do j=i,min(i-+31,n)
A(3) = B(H + C() (22)
end do
end do
The inner loop can be vectorized as follows:
do i=1,n, 32
m = min(i+31.,n)
A(i:m) = B(imm) + C(i:m) (23)

end do

The vector operations can now be mapped into vector register instructions as shown
next (vrl, vr2 and vr3 are 32-element vector registers)
do i=1,n, 22
m = min(i-31,n)
vrli =

vr2 =

A{l:m
C(i:m)
vrl +» vr2 {21)
:m) =

vrd =
Al
end do

vrd

Let us now discuss a more complex example. Assumne a multiprocessor with a cache
memory on each processor. Further assume that the cache (and thus the memory) is
divided into blocks of K words each, and that data is only exchanged between memory
and cache as whole blocks. Assume also that matrix columns are sequences of blocks (i.e.,

R . } - . ” VT v .] W, f -
AT DI AT AR, T (X 0 D L pOh C1, LM MO O e T e St LA L U

w
»

10

.
.

MUY,

: . : - . s RS RGN R v cpb -gh g¥ at, "
vs B € €a e ate 3 2t s kts 03 '3 o'P st gt 2%t 8’} i o° AN IR NI VEA DA RN B AR &N KRRV IR X ") k])

TS e
- o -

11 X
¥
- "[
}
"
'A
matrices are stored in column-major order and columns are much bigger than blocks). ’
Consider now the loop: "
do i=1,N o
do j=1.N i
B(j.1) = A(4,3) + 1 (25) ‘;*‘
end do »
end do vy
Ol
A naive compiler might transform the outer loop into a doall without any other ‘:i
transformations, causing (141/K) block transfers between memory and caches for each :1:
assignment executed. :c:
To improve this situation, the compiler could block both loops into groups of K itera- “r_":
tions. This would have the effect of transposing the matrix by KxK submatrices or ‘
blocks, thus the name loop blocking. After blocking and interchanging loops, we end up 3
with the loop: :::
do io=1,N,K L,
do jo=1,N.K l-':-
do i=io,jio+K-1 l:»‘
do j=jo, jo+K-1
B(j.1) = A(i.j) + 1 (26)
end do Wt
end do *'i
end do :.f.
end do .::;
If the outer loop is now trapsformed into a doall loop, the number of cache block :’?
transfers decreases to 2/K, a clear improvement over the naive approach when K is not .
small. ‘:{
To conclude the work on this loop we need to block once more for vector registers, vec- :.‘.
torize the innermost loops, and map into vector register instructions:*° .::
doall io=1,N.,K ”2
do jo=1,N,K (N
do i=io0,iotK-1
do j=jo, jo+K-1,632 gt
m=min(j+31, n) ::'.,
vrl = A(i, j:m) W
vr2 = vrl + 1 (27) Wi
B(j:m, i) = vr2 o
end do 'ﬂ
cnd do i
end do qﬂ
end do g,
Even though for presentation purposes the previous examples were shown as .l:
source-to-source transformations, paraliclization is most often perforined inside the rom- |:
piler, and usually the programmer is informed of the transformations only via annotated Ol
program listings. The annotations, when used in conjunction with information on execu- ‘
tion time of programn segments (known as a program profile), identify those segments of 5
5
9 Some transformations like vectorization actually make the code casier to read. On the other hand, :‘
loop blocking is an example of a transformation that the user would prefer not to see — it certainly dues not N
make the code any easier to read even though it makes it more etficient. o

- g Wl M %) L% Y | L% T\
s':‘.‘ﬁ .‘\'.'il; Wil x"""l.n;‘i‘;'0‘-'-0..'\"'1.- .;“ V 'Q'l,o‘..o' Pl ! &'i.-'l! .n. - o ..l \.g.".c !I“.'.‘.. l‘n“‘,.’i‘-"’-’t RO .'I.-' AP 3T DO DA

-~

code for which the programmer, in his quest for speedup, should rewrite or expand with
parallelization directives to the compiler. Two examples from Alliant Fortran are the
commands cvdsq cncall and cvd$qg nosync. The first one allows loops to be paral-
lelized in the presence of subroutine calls.!’ The second command allows parallelization of
loops even if several iterations assign values to the same memory location.

s
CRIC R

e

The >xistence of these annotations indicates that parallelization is different from tradi-
tional compiler optimizations. Thus, a compiler performs register allocation and usually
common subexpression elimination, but it never informs the user on how successful it was
in applying these transformations. The major difference between regular optimizing com-
piiers and vectorizing/parallelizing compilers is that the benefits of vectorization are
potentially higher, and either program rewriting or parallelization commands may be
necessary to obtain eflicient parallelism. An example of such a situation is provided by
the transformation that takes a Fortran do loop and transforms it into a vector assign-
ment statement. One piece of information required for this transformation is an analysis
of the array subscripts inside of the do loop. This analysis can be performed when the
subscripts are linear functions of the loop indices. When this analysis cannot be per-
formed, vectorization is precluded. For example, the loop:

do i=1,100
A(K(1))=A(K(1)) + 1.1 8)
end do

ECal

-
Py

.‘ -.. s -
. R SN A . el T

cannot be vectorized'? if nothing is known about vector K. One way to get this informa-
tion is via assertions. In this case, the compiler will vectorize only if the programmer
asserts that K (i) #* K(j) whenever i # j.

Depending on the target machine, the annotations provided to the programmer may
vary in complexity. I[n some cases it may be appropriate to show the programmer a
source code version of the parallelized program. This approach is followed by those paral-
lelizers that perform source-to-source translation such as Parafrase (Ref. 31), KAP (Refls.
17 and 18), VAST (Ref. 9), and PFC (Ref. 3). The output of these restructurers includes
some form of parallel constructs. Since no standards exist for such constructs, there is no
uniformity even though some form of vector extensions from Fortran 8x are frequently
adopted.

-
A - -

The input parallelization commands can also be replaced by parallel constructs. Thus,
instead of specifying that a loop may be vectorized, the programmer may write a vector
assignment statement. However, portability suffers when parallel extensions are used
since there is no standard for those extensions.

In the past, vectorizing compilers have been considered only in the context of dusty
decks'd. We believe that restructurers (source-to-source translators) are also useful in

' \Vhen compilers are faced with subroutine calls inside of loops, they usually assume the worst — that
the loop cannot be vectorized or multiprocessed. Recent work (Refs. 10, 14, 28, and 52) suugests that same
interprocedural analysis can be done to permit transformations in some cases. iJut user assertions are stiil
going to Le important.

12 By vectorizing we mean transforming loop (2%) into the single statement
A(K{1:2C3)) = A(R(L:120)) « 1.1
We should point out that even if nothing is known about ¥ we could transform (2%} into a sequence of vec-
tor statements, where the first ones do some sort of runtime dependence testing.

'3 The term dusty deck refers to old (dusty) programs that need to be compiled without human rewnit.
ing, either because the cost of manpower nceded for the rewriting is prohibitive, or becaase nobody under-
stands the programs any more. Some people feel that the only use for sophisticated restencturing compilers
is for processing dusty decks — that new languages allowing the explicit expression of parallelism will obvi-
ate the need for these compilers. One look at the resuits of loop bloeking above shouid convince anyone that
even if programmers can use explicit paraliclism, there are some optimizations better left to the compulers,

) . . rpoa ; : ; wa ¥t LG8 X OAMAGHGHOAGH S
DU LT M L USRI XA ' 8 g A A A I Y s T G A BN TV Ve e Ve b et

TR I

LR AR R PLR NN N (NP AR EN EA NN AN EN U BN ~ N 4 vy gtk a" W WL <4

other contexts. Specifically, a restructurer could be used to free the programmer (at least
to some extent) from performance considerations and let him concentrate on correctness.
We could, therefore, conceive of programming parallel computers as a two-step process.
First, a program would be written and tested. Once the programmer was convinced of its
correctness, the program would be transformed into an efficient version through
automatic means. Clearly, things will not always work out in this way since achieving
efficiency might involve changing the program in ways beyond the capability of current
restructurers. lowever, we believe that this two-step process could often be applied.

In the process of restructuring, interaction with the user may be needed due to one of
the following reasons:

® A certain transformation is valid only if the user supplies an assertion. The vectori-
zation of loop (28) is an example of this situation.

® The restructurer needs information from the user to decide how to transform a con-
struct. For example, a vector assignment where only some of the array elements are
to be assigned may be transformed into a sequence of vector operations including
gather/scatter operations or into vector operations that mask some of the assign-
ments. Knowing the density of the array elements to be assigned is necessary in this
case (See Ref. 20).

e The restructurer may not have a model of the target machine, and thercfore it wiil
be unable to decide by itself what transformations to apply even if the program
behavior is known at compile time.

Most of the restructurers today are batch restructurers. Some of them interact with
the programmer (also in batch mode) by requesting information in the listing and accept-
ing comment cards with information supplied by the programmer. However, interactive
restructurers have clear advantages, and are beginning to emerge.

Debuegers

Much has been done in the area of symbolic debuggers over the last ten years. Many
user friendly tools such as Berkeley Unix's dbx (Ref. 53) and Apollo’s debug (Ref. 6)
have done an excellent job of providing an environment that allows controlled probing
and analysis of application programs. Debuggers of this type typically support a set of
tools that can be used to determine the state of an object program at any point in its exe-
cution. These tools include the facilities for setting breakpoints, monitoring, examining,
and tracing variables (which can be symbolically referenced), and single-stepping the tar-
get program. This set of functions is usually sufficient to allow the user to determine the
unique state of a single processor application within the context of the original source pro-
gram. Supercomputer applications, however, present a more difficult problem to the
debugging programmer. These programs use vectar and/or multitasking parallelism in
order to achieve their hizch computation speed. Parallelism in programs introduces new
wrinkles that make it diflicult to extend serial debugging tools to the parallel domain.
Additionally, as mentioned carlier, the optimizing compiler tools that usually accompany
the supercomputer hardware do extensive restructuring of the original source program,
widening the gap between the user's perception of the application and the run-time
representation.

Vector parallelism by itself is not inherently complicated. Languages that include vee-
tor constructs exist today, and compilers for these languages can map high level veetor
constructs directly into vector instructions for the pipelined vector architectures. PPro-
grams that explicitly use only vector parallelism can be analyzed with traditional
debuggers having minimal extensions, since these programs still execute through a single
stream of staternents at one time. The problem arises when serial programs are passed
through vectorizing restructurers. These optimizers can significantly change the

13

G e

appearance of the original source code, making it difficult for a user to reconcile the edit-
time and run-time states of his program. For this reason. the reporting of run-time errors
may not make sense when returned to the user, forcing him to recompile his program
without optimization and rerun the application in order to help isolate problems.

Multitasking applications present a more serious challenge to debugger technology (as
well as ideology). In the parallel execution domain, the concept of a breakpoint is not
clear. In the parallel environment the notions of global and local effects must be con-
sidered. A local effect is one that is administered to a small group (possibly one) of pro-
cessors, whereas a global effect is one that is administered to all processors related to the
execution of a particular program. A breakpoint applied to one portion of code executing
on one processor may or may not be expected to halt all other processors executing the
same code.!* Furthermore, should a global effect for that breakpoint be desirable, the
question of granularity must be resolved, namely, how quickly after the breakpoint is
reached can all of the other processors be stopped? A similar problem exists with respect
to the variable name space. Tracing and examining specific variable names becomes more
tedious when several processors are executing, each with its own copy of the same routine
(and hence the same list of local variables). Tracing of such variables must be qualified
with additional information that identifies the processor or group of processors of interest.

The most challenging aspect of parallel debugging is the timing conflicts introduced by
interacting, independently running processors. The series of states through which a serial
program passes is not time dependent and is therefore repeatable, providing the opportun-
ity for an unlimited number of reruns in order to localize run-time anomalies. The set of
states through which a paraliel program passes is dynamic and very sensitive to the speed
at which each processor is progressing. For this reason, program errors may surface infre-
quently. Furthermore, these timing or synchronization errors might be compietely
masked when software debugging instrumentation is inserted into the code (thus changing
the run-time image).

Another debugging problem is the nature of supercomputer application programs.
These programs tend to manipulate large quantities of single- and double-precision
floating-point numbers to perform their tasks. Finding errors in output listings from
lengthy computations can be user-intensive and time-consuming. New methods of render-
ing this information in the form of graphic images must be used to present large volumes
of information in a concise manner.

Many solutions to the parallel debugging problem are starting to appear in industry
and academia. One such solution is Pdbx developed by Sequent Computer Systems,
Incorporated (Ref. 46). Pdbx is an enhanced version of dbx that supports debugging of
multiple process applications on Sequent's shared memory multiprocessor machine. In
addition to the functionality of dbx, Pdbx supports the debugging of multiple Unix
processes. Supported are such features as breakpoints for one or more processes, indepen-
dent examination and tracing of individual processes, and the use of multiple terminals or
“windows' for monitoring multiple processes. While Pdbx provides no facilities to con-
trol the repeatability of a parallel program, it does extend the functions of a traditional
serial symbolic debugger to provide some tools for probing the execution of parallel pro-
grams.

Instant Replay,'™ developed at the University of Rochester, is another debucging
environment targeted at helping users debug parallel programs on the BBN Buttertly
(Ref. 31). Instant Replay attacks the repeatability problem by regulating and recording
access to shared data objects. By introducing some small run-time overhead (variable,

' CSRD is currently researching the question of whether global cffects are necessary or desirable when
debugging parallel programs.

14

. TR R NI Oy N Y I Y Y Y TR DY TR N TR VRS Oy < 5" <

15
but as low as one to ten percent in some applications), Instant Replay attaches aging
information to all shared objects and records revision numbers as these objects are
, updated and disseminated. [n addition to recording this revision information, the run-
o time system has the ability to “replay’ the application while insuring the same access
;f.' sequences to shared objects. This gives the programmer the capability to perform the
cyclic rerunning necessary to do incremental debugging on a parallel machine.
The future will probably bring developments in several areas in response to the
K increased challenge of constructing and debugging parallel programs. Iardware enhance-
:,\ ments represent one necessity. New supercomputer designs will continue to incorporate
1;"‘ an increasing amount of instrumentation to support run-time monitoring and control.
‘:: This special-purpose hardware is nccessary to monitor the execution history of parallel
%‘o' programs in a non-intrusive way. Additionally, low-tevel hardware support can be used to
oy ctfect a parallel breakpoint mechanism that cannot be cleanly achieved in software.
Other tools to be expected in the future include pre-compilation and post-run analysis
. tools. Designers of parallel software will be able to use these tools to analyze interproces-
',,: sor communication and cite coding sequences that can be potentially time dependent.
RN Such an analysis system is being developed at the University of Illinois at Urbana-
':"' Champaign (Ref. 4). The system consists of a diagnostic compiler that can warn the user
;.0. of source code sequences that contain guaranteced race conditions as well as potential race
- conditions that cannot be determined with certainty at compile time. To help ascertain
e the behavior of indeterminate race conditions, the compiler will automatically insert the
0’"» appropriate instrumentation into the object code to investigate data reference behavior.
:::; Trace data generated by this instrumentation can then be inspected (both manually and
p': automatically) to help determine the status of potential timing hazards recognized before
’:t, execution. Systems such as this serve not only to assist users in locating nundeterministie
:.:I code sequences in parallel applications, but also to help users improve program perfor-
mance. By allowing the compiler to instrument an application in areas of uncertain race
o1 conditions, the user can potentially learn of assertions he could add to his code that would
|; eliminate conservative assumptions that might normally be made by the restructuring
:: compiler.
:‘b: Improvements in development environments will also help to ease the burden of using
a4 supercomputers cffectively. Knowledge-based systems could play a major role in the
e implementation of an error-free program. By guiding the user through the selection from
a library of optimized numericai kernels, expert systems can aid the user in locating reus-
;';‘: able, bug-free code. This is one way the environment can help to reduce the potential
;-':l number of software errors during development.
:::l: Another way is through the use of new knowledge-based debugging tools. An intelli-
8 gent parallel debugging system could work in conjunction with the system compilers and
":v:l run-time monitoring system to ascertain the required information for a processor-time
'\ graph (Figure 1). Once an crror is recognized in the program, the programmer could
invoke a debugging expert that would ask a scries of questions relating to the error to
'\ help the user isolate the problem. In the case of an intermittent synchronization crror,
;:I‘ the expert system could reference the processor-timne graph and supply a mapping of +xe-
'D: cution time to source code lines to uid the user in looking for programming errors. [n the
:‘ case of Figure 1, the prozrammer would be dirceted to review the code that exceures
8y between times t, to t, and times t. to tg since maximum parailelisin oceurs during these
2 times and is thercfore likely to be the eause of intermittent synchronization problems.
AN Finally, continuing improvements in restructuring compiler technology will reduee the
l:e: pressure on individuals to find and implement parallelism in application programs. \While
:h: parallel progeamming must be encouraged in order to build applications that achieve the
A highest levels of performance, automatic optimization systems will allow more rasual users
' to develop and debug an application in a serial, reproducible environment — leaving the
[Z
L]

\ g q ' (RN, AR O DL AN L YA
‘m\‘h ";\.\""\“lei.“(,"||A,fl‘.le,'!"‘l%' ‘g"'ﬂ?‘.’,‘;"‘n‘f’ﬂ..A',.‘l‘,...,.a..'k'..a.. [.".u., UL Xl N A O A M LU R TR

number
of -
processors |_

-
i] I | ! !
i i | I T .
t, t, t, t, t ty
time

Figure 1 Sample processor-time graph
correct parallelization transformations to the compiler.

Performance Evaluation

Performance evaluation on any machine has traditionally been a difficult and much
neglected task. Supercomputers worsen the problem with a complicated arsenal of
hardware and software additions that require new levels of understanding by the user.
Many of the architectural features used by supercomputer designers to gain computa-
tional speed are the same features that make program performance diflicult to track.
Pipelined vector arithmetic units, shared caches, interconncction networks, and shared
memories are just a few aspects of supercomputer systems that can be responsible for a
wide variance of execution times for a particular application, depending on their opera-
tional efficiency. These architectural components are complex and interrelated, resulting
in a run-time environment that is difficult to trace and analyze.

State-of-the-art performance evaluation tools for existing single-processor machines are
heipful when extended into the parallel domain, but remain too simplistic to do a rom-
plete job. These utilities Licelp programmers understand the run-time resourees consumed
by an application at a high level, without providing insight into the machine level interac-
tion that might be involved. The Unix operating system supports performance anaiysis
for programs written in Fortran, C, und Paseal throngh a set of protiling tools and sy<tem
timer calls. One of the protiling tools is the gprof (Refs. 53, 22, 23) utility which nllows
users to accumulate eall counts and execution times on a subroutine basis by sampiin: the
program counter of the running appiication at regular intervals. This information i< coj-
leeted through the use of special run-time code inserted into the object module on demand
by the user at compile time. The protiling technique is very usetul for iolating specuie
routines that account for major portions of an application's execution time, but does ittie
for helping the user to improve ctiiciency and utilization once the trouble arens have been
located.

FFor example, the following code fragment:

ANANANMNNAN RURSURDAN

16

TR T T Pt PR TR W WSO W U TN N N WU RN et R R R o oo oy " Bac Up Ma® »

e |}
"
. ,—.::
. »
4
3
17 ¢
’ 0
.:.:«
14
(%]
do 10 I =1, 100 LAY,
do 10 J = 1, 1CO w
do 10 K = 1, 1CO X
A(I, J, K} =0 (29) :"
end do "\“
end do 0‘.’,@
end do
is an example of a loop that will generate an excessive number of page faults when exe- ’ ;'.
cuted in a virtual memory system. The reason for the performance problem is that the s
array is referenced in the ‘‘wrong” order. With Fortran arrays, element A(1,1,1) is :
adjacent in memory to clement A(2,1,1), not A(1l,1,2). For that reason each 0'.:
write to A(I.J,K) may require a disk access instead of a simple memory write. In this o
example, knowing that the routine which contains this loop is responsible for a significant I
percentage of the execution time for a particular application is useful but not sufficient.
[nexperienced programmers who have not seen this effect may be unable to correct perfor- .
mance deficiencies of this sort. The analysis given by the run-time system should include X
more detailed information about the nature of the delays incurred in the designated rou- :.:G
tine along with suggestions about whether the observed performance is *‘reasonable.’ |:ai
While the above example represents a simple problem that can also be seen in unipro- :0:'
cessors, other examples for parallel machines can be more subtle. Consider, for example, ‘.
an application that applies a set of n processors using a shared cache to do a computation
on n individual, independent arrays. Depending on the size of the arrays, the access pat- \5
tern of cach processor, and the cache algorithm used by the memory system, the speedup N

seen for this application could be anywhere from n down to numbers less than 1.!® Speed- \
ups of less than 1 can result from each of the n processors overwriting cache blocks that .t
have just been loaded by one of the other piocessors. If perfectly timed, each processor's
memory reference would result in a cache miss, thus nullifying the usefulness of the

cache.!® While the situation described is a pathological case, some interference effects do ey,
exist in the caching system that can impact performance, Additionally, other aspects of wa
the machine operation such as contention in the interconnection network also impact the ':
program's performance. Complete analysis of the performance of applications in the pres- ','
ence of these cffects requires the ability to capture this information. t :
As was the case with debugging, restructuring compilers complicate the effort of tuning

supercomputer programs. Again, the user is faced with the problem of reconciling run- K
time trace and performance information with source code listings that do not completely t:::
match. More recent optimization techniques such as subroutine expansion (Refs. 28, 35) :"i
pose some of the more difficult problems, since many performance tools tend to collect A
data at the subroutine level and this transformation erases that modularity. Subroutine s,
expansion enlarges the granularity of the monitored program, giving the user less detailed K O
information about the nature of the run-time performance. ’
Another aspect of computing in general (and supercomputing in particular) that is -
troublesome for performance evaluation is multiprogramming. Since investments in]
supercomputer hardware can be quite large, there is a strong incentive to achieve max- ¢ ‘:
imum utilization of available machine time. Utilization of supercomputers is usuaily ‘
enhanced through muitiprogramming. This causes problems for the performance anaiysis t
'

** Speedup is T, / T, where T, is the time required to execute the application serially and T, s the

time required to execute the application using n processors. Speedups of less than 1 indicate that the appii- "'!:
cation runs slower in the parailel environment than it would have serially. |“‘
‘% In fact, since the caching mechanism introduces some ovethead, the resulting application might run ‘ﬁ,
slower than it would with a single processor system with no cache. l'%
by

o D . . " LN Y 0
l:‘*‘“'.'a“‘» l.u.l'n» . "I‘.‘\ “i“.*“‘.ﬁ" * .l "L"l.“l..."“l “h'.‘- "..'h" (N ”!'.'-', ,\l e ?l."h r‘.'“l".l .'. L ‘!‘i‘.h‘. .' <.l »

iy o8, TS g 0a Vel) Sl T R O T N T T T D T AN IO SO O U T R UL R T
e . o s ¥ "

13

)

]

]

?
system by complicating the hardware and software instrumentation. Multiprogrammed
systems require enhanced performance analysis instrumentation in order to do the neces-
sary accounting for multiple jobs. For job swaps and operating system calls, more con-
text information must be saved to insure integrity of individual job accouanting.
Hardware and software probes must be turned off and on during context switches instead
of running coatinuously as in a monoprogrammed environment.

Multiprogramming also causes problems for the user attempting to improve an 0!
application’s execution performance. Applications running in monoprogrammed environ- .:‘,
ments are easily evaluated by examining the apparent execution time of execution or)
“wall clock’ time. Users optimizing applications in such an environment need only make I:““
changes and execute again, comparing the new wall clock time to that of previous runs. 3
While wall clock time is a useful metric to gauge the performance of applications in these !:
monoprogrammed environments, it is not useful in understanding the performance of an ’
application in a multiprogrammed system. System loading, scheduling algorithms, 'R
resource availability, and other factors uncontrollable by the user all contribute to the 'y
apparent execution time of an application. The user will find that two successive runs of 4
an identical program could vary greatly. "

Future programming environments will include many enhancements to the ¢
hardware/software configurations that are offered by supercomputer vendors if applica- Al
tion programs are to perform efficiently on their machines. First, hurdware enhancements
will be necessary to achieve many of the performance evaluation goals currently
envisioned. Some manufacturers have already realized the need for including such spe-
cialized hardware as part of their standard machine configurations. Cray Research, Inc.
manufactures a machine calied the X-MP which includes a hardware performance monitor
that comprises = set of counters that can monitor certain hardware-related events (Ref.
32). These counters track events such as floating-point operations, instruction fetches,
I/O and CPU memory references, and vector operations on a per-CPU basis.)? As super-
computing experience accumulates, the heightened awareness of the need for performance
information will drive other manufacturers to provide a basic set of hardware instrumen-

x_e_®

.
P .

Lz

P

. 'y

tation that can be used for performance and correctness tracking. 4 o:
Perhaps the greatest potential for imnprovement in the area of performance evaluation N |:

is that of presentation techniques. While data capturing facilitics in system hardware and)

software are evolving, innovations in the area of data rendering are slow in coming. The
volume of run-time trace data that could be of interest in a parallel execution environ-
ment is too massive to represent in raw férm. Of particular interest are areas of interac-
tion between multiple processors that are synchronizing in some way. .\ detailed analysis
of this environment could require an extensive log of time-stamped nccesses. Such a log is
usually not practieal to review, possibly consisting of several hundreds of pages of entrivs. :.
2

=2

v o
.. <,
-

More interesting technigiues involving concise graphic representations must be deveioped
to make this information more usable.

r New innovations in the area of pre-compilation and pre-execution performance analysis ::‘:‘
cools can aiso be expected. These tools might take several forms to aid the user at :‘.t
ditferent times during the program development cyele. One such tool might be a proram |||'
anaiyzer that could evaluate the use of system library routines and present ostimates of t;‘;
the run-time performance of an applieation based on past exeeution statisties of th '

library kernels and the extent of their usage. Other tools might look at generated assem-
bly code and make predictions about execution speed based on the density of vector come
putation opcodes versus that of scalar, control, and other “';;lue’ opcodes.

]
T The Cray X-MP is available in multiple CPPU configurations. S\

A 150,800 .8 p P By 3 ¢ Ty Ty
O e R O K GO O DO,

3 3 .
KRS 3 ‘l“, A

: . N T i . L
, » \ "
OO AN ANOCFOUOOOA N \‘.‘\‘“O'sb‘. \‘E‘-h'a"'e‘.""‘ﬂ.‘-"‘.! RO A QA c‘| KOO e X ‘.!. v h

As with debugzing, the problem of performance evaluation can lessen as compiler tech-
pology continues to improve. The problem of tuning application programs should gradu-
ally become a higher level concern than it is today. Compilers will continue to find new
ways of exploiting parallelism at low levels, while applications programmers are freed to
concentrate on higher level algorithm design issues. Knowledge gained by the perfor-
mance analysts today will be incorporated in tomorrow’s compilers. As the effects of
caching and memory interconnecction networks are better understood, heuristics for better
transformations can be built into optimizing compilers. These compilers should also be
adaptive — able to generate eflicient code for many different vendors’ machines in a par-
ticular class and dependent only on a list of important parameters such as cache size, vee-
tor register lengths, number of processors and others. Additionally, these compilers might
be able to use data collected by performance monitoring systems in order to further retine
compile-time optimizations. The current static decisions about optimizations might be
dynamic in the future — based on information about the eventual run-time environment
(such as system loading). In this environment, the compiler system will migrate toward
an expert system model, soliciting information from the user and statistics databases in
order to provide optimal execution for a wide range of applications.

Integration

With the number and complexity of software development tools increasing, the need
for an integrated environment is becoming increasingly necessary in the high speed com-
puting arena. A graphics-based scientific programming environment with an integrated
software productivity tool kit has many things to offer to the supercomputer programmer
that cannot casily be offered by the conventional software development tools being used
today.

First, the programming environment should provide a consistent user interface para-
digm across the entire range of supported tools. Casual or infrequent users are not likely
to spend extensive sessions with user manuals learning the idiosyncrasies of several tools.
Rather, users will become frustrated with the system’s complexity and will resort to func-
tioning at the easiest possible level, thereby minimizing his effort (and possibly his
efficiency and productivity).

A well-structured environment should consist of a single interface style through which
all packages are accessed. The screen images seen by the user during program editing
should be the same as the images seen during debugzing and program optimization. Once
the user is fluent with one aspect of the system, several functions of the system should be
usable with minimal additional effort. The efficacy of such an approach can be scen by
the case of use and popularity of extant integrated window-based systems such as the
Apple Maclntosh.

Additionally, the user interface should support a graphical as well as a textual
representation for programs. Indeed, source text will always be viewable and editable by
the programmer, but higher level abstractions such as static subroutine call graphs and
task/process graphs are useful in understanding overall program structure more readily.
Just as graphic images can be used to render a concise representation of large volumes of
output data, graphic prosram structures ean be a uscful tool for the programmers wishing
ta clide much of the source-level implementation details in favor of perusing a terse
representation of an application's architecture.

The Center for Supercomputing Research and Development at the University of Llinois
is currently developing an cnvironment that supports such a programining model. The
cnvironment, named Faust, is targeted at integrating several software development toois
through a common window-based interface. For example, a user wanting to develop an
application at the source-code level may bring up a textual window and cnter Fortran
source using a conventional text cditor (Figure 2). If the user would rather see the

19

'.H"".x

(AN

Dol

N

AN

)

T e T EX

(T

L X Y)
‘\A."!“n’i‘

&

LN

U U W WU WU

. o~ - "
f‘a‘. l‘a‘l‘\'l‘!"".’; A I’.\'g Ae LA N, ! I l‘w‘ UM .I."y

ot a0 a et e VA" s 00 ath L 5 a80 2R A" a0 at " ate Ve s

L3

PROGRAAM MAIN

CALL A

DOl =1,30
CALL B

END DO

CALL C

END

Figure 2 Simple application being examined at the source code level

MAIN

PN NS

I

Figure 3 Same application at the subroutine interconnect level

application at a higher level, an “unzoom” function can be invoked to bring up the
corresponding subroutine interconnection graph (Fisure 3). Faust can automatieally
create the subroutine call graph (if it does not already exist) from source code; however, if
desired, the user may do the original cditing at the graphic level of abstraction and associ-
ate source code for each “block™ as the implementation proceeds. Faust also supports
other levels of detail including process graphs that represent parailelism as well as data-
dependence grapiis for aiding interactive restructuring.

The concept of detail hiding is the same rationale used to justify high-level langunses.
Programmers usually want to coneentrate on a solution to an application problem in more
abstract terins than is possible through the use of assembly language. or this reason,
high-level languages create the “language environment” in which the programmer works,
[fiding the details, however, is not always desirable. In come operations, the programmer
may require the detailed information to correet deficiencies in his application (especially
with respect to debugging and performance improvement). To support this faciiity,

B Y

R T R R O A s

e

#

Tyt et ke oy

B

4'.4'_-.‘0.,

Sl el g, 4"'_

b b kd R ik Ve B AR N g L G Nl Gl 1aR N f Vat Va0l Fad 00 0000 N0 €8 000, 8 0.0 a0t 0.0 0 0 bt .02 2" ‘48" TRLWIRUWS gl gt gt gt g

it
g *
"
:fi:
several Unix-based compilers often include an option that allow a user to see the assembly
‘,;1: code generated from his source files. This gives the user the ability to work at the higher
‘l," level abstraction during normal use as well as to analyze machine level details when neces-
.:.“.. sary. The superenvironment builds on this idea, providing more levels of abstraction that,
f.;l: are completely controllable by the user. While this issue of multiple levels of detail is not
* " specific to the programming environments of supercomputers, the additional complexity
bt of multiple streams of execution makes the abstraction even more desirable,
o The scientific programmer's environment needs to be flexible in a number of different
I‘~ ways. First, the environment must support users of varying levels of expertise.
o Engineering-oriented users are likely to want to concentrate on solving applications prob-
R lems — not performance problems. The environment should support this group of users
y \ with an array of automatic restructuring tools and electronic experts that can shoulder
' most of the burden of achieving execution efliciency while the user focuses on his algo-
rithms and application. Numerical analysts and systems programmers, however, will
e expect the environment to provide more fundamental tools for scrutinizing the more sub-
:.:" tle aspects of machine operation in order to retrieve the low level data they need to fine
3:(: tune system libraries. Somehow the environment must support both ends of the spectrum
:;:l in a unified manner.
\',‘.: Second, the programming environment should be able to support multiple types of
S machines. Many styles of new machines will be developed over time and the life of an
. application program will succeed several machine architectures. Additionally, many users
‘: oy support applications on muitiple machines at the same time, frequently moving applica-
! tions between them as required. For these reasons, the environment should be adaptable
b enough to support a production application on several vendors' architectures without
o> requiring significant effort from the user, This can be achieved by designing an extensible
:‘: n, interface through which remote utilities (such as vendor-specific optimizing compilers) can
bl be attached while maintaining the same dialogue and appearance to the user. The local
s utilities should also be designed to work according to heuristics developed for general
) architectural characteristics rather than machine specific idiosyncrasies (although, as men-
N tioned above, numerical analysts will want to take advantage of machine-specific
! phenomena when building heavily used kernels). For example, a restructuring compiler
_.-: that does transformations for a generic vector processor with vector register length n can
o be useful for a number of different machines just by supplying the appropriate n for the
N machine of interest.
s, Finally, the environment should support a wide variety of language domains. \Vhile
et Fortran is certainly necessary, languages such as C, Ada, Pascal, Val, and others must
:' also be considered. Future developments are also likely to include languages of a more
. symbolic nature. Interactive environments built on systems such as Maxima (Ref. 44) and
Reduce (Ref. 51) could provide a very useful function, offering a higher level of communi-
LN cations to scientific users who would prefer to express problems in a representation that
r more closely resembles mathematical notation than procedural source code. Ultimately,
b programming environments will evolve to transcend the mundane details of traditional
".:- programming, allowing scientists and engineers to converse in a language more familiar to
’n.: themn while the environment fills the gap between the symbolic representations and the
Ce, encoding required by the underlying hardware.
'_':':: The scientific programming environment is well suited to the workstation hardware
) 3'; offered by manufacturers such as Sun, DEC, Apollo and others. These nodes consist of
bitmapped graphia screens attached to a 32-bit microprocessor running Unix. While run-
: ning the environment's *‘front cend software on another host (the workstation) poses
L0 some technical problems with respect to implementation of control and communication
';' links, this configuration offers the ability to run screen intensive user interaction support
Al functions locally which provides several benefits. First, the user need not use expensive
i
o
B
o".
l,'
c:':t
a".c
"
W

A v ’, > aunw - "L, - 3 4 L % () OGO
IO \‘t NATANN ' v - I AU A O R I S K MO M BN R OO N S K e LY AN AR AR ‘t.-\l'!.n".\'. X i ."u.!.l".l‘ ."!"‘".."“e".-'.““‘“.."' +

" v + - -8 % 2, ¥ P N N B
ATV WA TOIE PO TONR Tl 2K IO © g0 xat et lav et & Rat 0 8 a¥e At ata ath 2¥d o'd 2% g 0" 2000 .0 K 0700 80" 80 0 3.0 "ol el Pl il Sv8 Ce¥ 2% et ad, gt
1, $ea Bte &g M & - . .

22

supercomputer hardware to service functions such as text editing and graphics manage-

ment. Second, keeping much of the functionality within the workstation helps promote

the desired goal of supercomputer vendor independence. This common front end also pro-

motes familiarity across systems through the enforcement of a common user interface

between the application programmer and the supercomputer. Finally, having local intelli-

gence in the workstation gives the user more consistent response from day to day.

o

5 ACKNOWLEDGEMENT ,1:%'

This work was supported in part by the National Science Foundation under Grant “$.

Nos. US NSF DCR84-06916 and US NSF DCR84-10110, the US Department of Energy : "“

under Grant No. US DOE DE-FG02-85ER25001, the United States Air Force under :‘l;

Grant AFOSR-85-0211, and by a donation from the IBM Corporation. -

6 REFERENCES il

L)

1. Ackerman, W. B., and Dennis, J. B., "“VAL: A Value-Oriented Algorithmic :\:a
Language,” Report No. TR-218, June 1979, Laboratory for Computer Science, 4:,‘
M.LT., Cambridge, MA. {.:;

3

2. Ahuja, S., Carriero, N., and Gelerater, D., “Linda and Friends,” Computer, Vol. 19,

No. 8, Aug. 1986, pp. 26-34. wy

O

3. Allen, J. R, and Kennedy, K., “PFC: A Program to Coavert Fortran to Parallel ta b

: Form," Report No. MASC-TR82-6, Mar.1982, Rice University, Houston, TX. ..

fd

: 4. Allen, T., and Padua, D., "“Debugging Fortran on a Shared Memory Machine,"” to 'l:q‘

| appear in Proceedings of the 1987 IEEE International Conference on Parallel Pro- :}Qf
cessing, 1087.

5. Alliant Computer Systems Corporation, “FX/FORTRAN Language Manual,"” No. : :l
302-00002-B, Jan. 1988, Alliant Computer Systems Corporation, Littleton, MA. ";

t " "

6. Apollo Computer, Incorporated, “DOMAIN Language Level Debugger Reference,’ :
No. 001525, 1985, Apollo Computer, Incorporated, Chelmsford, MA. f:::

7 Backus, J., *‘Can Programming be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs,” Communications of the ACM, Vol. 21, .
No. 8, Aug. 1978, pp. 613-641. . :-;,

8. DBooth, M., and Misegades, K., “Microtasking: A New Way to Harness Multiproces- :-‘)
sors,”’ Cray Channels, Vol. 8, No. 2, Summer 1986, pp. 24-27. W

‘ 3

9. Brode, B., ‘"‘Precompilation of Fortran Programs to [acilitate Array Processing,’’ N"'
Computer, Vol. 14, No. 9, Sept. 1981, pp. 46-51.

10. Burke, M., and Cytron, R., “‘Interprocedural Dependence Analysis and Paralleliza~ o
tion,” Proceedings of the ACM SIGPLAN 86 Symposium on Compiler Construction, :-"
SIGPLAN No. 21, Vol. 7, July 1986, pp. 162-175. \ ™

g

11. Burroughs Corporation, ‘'llliac Fortran Specification,” No. 66106, Dee. 1970, \:; ‘

Burroughs Corporation, P’aoli, PA :.f',
H » L

12. Burroughs Corporation, “Burroughs Scientific Processor (BSP) Vector Fortran Prel-
iminary Specification,’” 1975, Burroughs Corporation, Paoli, PA. oy

13. Burroughs Corporation, ‘“‘Numerical Acrodynamic Simulation Facility Feasibility (
Study,’ Mar. 1979, Burroughs Corporation, Paoli, PA. :\, :

[

14. Callahan, D., Cooper, K. D., Kennedy, K., and Torczon, L., ‘‘laterprocedural E‘ ‘

R
Lt
(X
Gv't
3
!
l?\"‘

. \ s %) l-
3 » = » Vo ¥ W o W) S T P ¢ JU W OLTWE RN 4 ey
“‘r"‘“‘-.‘-'a‘.-'\“.‘ i‘.‘s S h .‘\..‘l‘; ‘.m‘ ;“b « l‘.c.l .'0.-‘!‘«‘!!& 4, 8.8, N I.u'lvt Ly I'tn‘\ !i“-n.l. .* = N ,;’ll A“,l"‘ LY ." PO IR A TR LR P

U IR T AN AR AR A KR AR N RN LYY ' ‘0 avi als a®f ctd ats a¥eath V2 Vavabe Vit fat 1yt 0t 8t KA ARTE FANY AN LA U ¥V ORI gt ay Sh OwUs

23
Constant Propagation,” Proceedings of the ACM SIGPLAN 86 Symposium on Com-
piler Construction, SIGPLAN No. 21, Vol. 7, July 1986, pp. 152-161.
15. Clark, K. L., and Gregory, S., "‘Parlog: Parallel Programming in Logic,”” ACM Tran-
sactions on Programming Languages and Systems, Vol. 8, No. 1, Jan. 1986, pp. 1-49.
16. Cray Research, Inc., *Cray X-MP Multitasking Programmer's Reference Manual,”
Publication No. SN-0222, Oct. 1986, Cray Research, Inc., Mendota Heights, MN.
17. Davies, J., Huson, C., Macke, T., Leasure, B., and Wolfe, M., ‘“The KAP/S-1: An
Advanced Source-to-Source Vectorizer for the S-1 Mark Ila Supercomputer,”
Proceedings of the 1986 IEEE International Conference on Parallel Processing, 1986,
pp. 833-835.
18. Davies, J., Huson, C., Macke, T., Leasure, B., and Wolfe, M., “The KAP/205: An
Advanced Source-to-Source Vectorizer for the Cyber 205 Supercomputer,’” Proceed-
ings of the 1986 IEEE International Conference on Parallel Processing, 1988, pp. ‘.‘.‘
827-832. o
“
19. Dijkstra, E. W., “The Structure of the T.H.E. Multiprogramming System,” Com- :.l!,
munications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346. N
bt
20. Fujitsu Limited, “Amdahl VP/Application Development System Fortran 77/VP il
User's Guide,” Publication No. MC-142008, July 1988, Amdahl Corporation, Sun- '
nyvale, CA. '\-
21. Gabriel, R. P., and McCarthy, J., ‘Queue-Based Multiprocessor Lisp,” Proceedings ::;:
of the 1984 ACM Conference on Lisp and Functional Programming, Aug. 1984, pp. S
25-44. A
22. Graham, S. L., Kessler, P. B., and McKusik, M. K., “Gprof: a Call Graph Execution "’
Profiler,” Proceedings of the ACM SIGPLAN 1982 Symposium on Compiler Con- by
struction, Vol. 17, No. 6, June, 1982, pp. 120-1286. (A
|'.|
23. Graham, S. L., Kessler, P. B.,, and McKusik, M. K., **An Execution Profiler {or 't.‘
Modular Programs,’ Software - Practice and Experience, Vol. 13, 1983, pp. 671-685. 1‘.5‘(
UM
24. [alstead, R. H., “Multilisp: A Language for Concurrent Symbolic Computation," 'al,
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, Oct. i
1985, pp. 501-538. o
. . +
25. Harrison, W. L., “Compiling Lisp for Evaluation on a Tightly Coupled Multiproces- ::‘.
sor,” Report No. 565, Mar. 1986, Center for Supercomputing Research and Develop- :.‘l_
ment, University of Illinois at Urbana-Champaign, Urbana, IL. ‘:::
26. Harrison, W. L., and Padua, D. A., “Representing S-Expressions for the Efficient .'0'
Evaluation of Lisp on Parallel Processors,’” Proceedings of the 1986 IEEE Interna- i
tional Conference on Parailel Processing, 1986, pp. 703-710. e
o Al
27. Hudak, P., "“Para-Functional Programming,” Computer, Vol. 19, No. 8, Aug. 1986, '. d
pp. 60-70.)
28. lluson, C. A., “An In.linc Subroutine Expander for Parafrase,” Report No. 82-1118, :
December, 1982, M.S. thesis, Dept. of Computer Science, University of Illinois at o
Urbana-Champaign, Urbana, IL.
oy
29. Kowalik, J. S., Parallel MIMD Computation: HHEP Supercomputer and Its Applica-)
tions, The MIT Press, Cambridge, MA, 1985. . 'lf
30. Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B., and Wolfe, M. J., "Depe.ndence s
Graphs and Compiler Optimizations,” Proceedings of the 8th ACM Symposium on :
v
I:.:
I‘(.
s
1:"‘
W
»
-
o
r'::
. .y X . oy
‘ "‘.t"u" !‘i:a.'rl",i“.n’i.v‘,\ E !"""i“.'-f‘! t“. “1“1‘ \ 1.\ A \'.'l'- l.'d’a..t‘l‘l.n‘.i."h‘li.‘,j. ,M‘!l’s‘;"’lo ..h.!‘n‘?.o‘..u"‘q.'»lx P e.!'\."t. y‘.‘l...;" A n'n‘.o.‘,'v"'-"'."l.’f‘x"%"‘lf"“

INAN R SR ANLEN AN AT RN N XY R

T W

L e e

36.

37.

39.

41.

17.

31.

32.

33.

10.

42.

Principles of Programming Languages (POPL), 1981, pp. 207-218.

Kuck, D. J., Kuhn, R. H., Leasure, B., and Wolfe, M. J., “The Structure of an
Advanced Retargetable Vectorizer,” Tutorial on Supercomputers: Design and Appli-
cations, [EEE Press, New York, NY, 1984, pp. 168-178.

Larson, J., *‘Cray X-MP Hardware Performance Monitor,” Cray Channels, Winter,
1986, pp. 18-19.

Lawrie, D. H., Layman, T., Baer, D., and Randal, J. M., “Glypnir- A Programming
Language for Illiac [V,” Communications of the ACM, Vol. 18, No. 3, Mar. 1975, pp.
157-164.

LeBlane, T. J., and Mellor-Crummey, J. M., “Debugging Parallel Programs with
Instant Replay,” IEEE Transactions on Computers, Vol. C-36, No. 4, April, 1987,
pp. 471-482.

Loveman, D. B., “Program Improvement by Source-to-Source Transformation,”
Journal of the ACM, Vol. 24, No. 1, Jan. 1977, pp. 121-145.

McGraw, J., Skedzielewski, S., Allan, S., Grit, D., Oldehoeft, R., Glauert, J., Dobes,
I., and Hohensee, P., “SISAL: Streams and Iteration in a Single Assignment
Language: Reference Manual,” Report No. M-148, Revision 1, Mar. 1985, Lawrence
Livermore National Laboratory, Livermore, CA.

Metealf, M., “Fortran 8X — The Emerging Standard,” ACM Fortran Forum, Vol. 6,
No. 1, April 1937, pp. 28-47.

.

Millstein, R. E., “Control Structures in Illiac IV Fortran,” Communications of the
ACM, Vol. 16, No. 10, Oct. 1973, pp. 621-627.

Nikbil, R. S., Pingali, K., and Arvind, “Id Noveau,” Computation Structures Group
Memo No. 265, July 1986, Laboratory for Computer Science, M.LT., Cambridge,
MA.

Osterhaug, A., Guide to Parallel Programming on Sequent Computer Systems,
Sequent Computer Systems, incorporated, Beaverton, OR, 1985.

Padua, D. A., and Wolfe, M. J., “Advance Compiler Optimizations for Supercom-
puters,” Communications of the ACM, Vol. 29, No. 12, Dec. 1986, pp. 1184-1201.

Paul, G., “VECTRAN and the Proposed Vector/Array Extensions to ANSI FOR-
TRAN for Scientific and Engineering Computation,” Report No. RC 9223 (#4051S),
Jan. 1982, IBM T.J. Watson Research Center, Yorktown Heights, NY.

Paul, G., and Wilson, M. W., “The Vectran Language: An Experimental Language
for Vector/Matrix Array Processing,” Report No. G320-3334, Aug. 1975, IBM Palo
Alto Scientific Center, Palo Alto, CA.

Pavelle, R., “MACSYMA: Capabilities and Applications to Problems in Engineering
and the Sciences,”” Applications of Computer Algebra, Kluwer Academic Publishers,
Norwell, MA, 1985, pp. 1-61.

Scarborough, R. G., and Kolsky, II. G., *A Vecctorizing Fortran Compiler,” IBM
Journal of Research and Development, Vol. 30, No. 2, Mar. 1086, pp. 163-171.

Sequent Computer Systems, Incorporated, “Dynix PDBX Debugger User's Manual,”
No. 1003-42756, May, 1986, Sequent Cumputer Systermns, Incorporated, Deaverton,
OR.

Shapiro, E., “"Concurrent Prolog: A Progress Report,” Computer, Vol. 19, No. 8,

W@ A R P e B Vo F g VR RS VR D B R B P S R G R N AR Y A Y Y

24

EE

Y 4
. ,, N -~ . -~ - — 1t
51tV ‘J"J!‘xl&-‘f .ﬂiv-.".o! ALY AR -'!'\ A |'.. 38,04, 98 %0 l'...l‘\ o, ',‘1‘.,\,‘ AR ﬂ"‘l'!‘l . a‘.‘\“‘v"‘ﬂ“d Xaltht) ‘.O“n"."ﬁ L .-.l‘;'lu'i LN ALY a‘t‘-"l PLASCASKH

R N A R O R A R R R N O T R o ‘4 a'4 pt S abe ate afe ara U- € fa’ 9s @e' % faf §or @0 @2F ot gt g A'g

. ‘\.

25 e

Aug. 1088, pp. 44-58. =£.

48. Smith, B. J., “A Pipelined, Shared Resource MIMD Computer,’” Proceedings of the o
1978 [EEE International Conference on Parallel Processing, 1978, pp. 6-8. W,

49. Steele, G. L., and Hillis, W. D., “Connection Machine Lisp: Fine-Grained Parallel W,
Symbolic Processing,” Proceedings of the 1986 ACM Conference on Lisp and Fune- N
tional Programming, Cambridge, MA, Aug. 1986, pp. 279-297. ‘

50. Stone, J. M., Darema-Rogers, F., Norton, V. A., and Pfister, G. F., “Introduction to kN
the VM/EPEX FORTRAN Preprocessor,” Report No. RC 11407 (#51329), Sept. ™
1985, IBM T.J. Watson Research Center, Yorktown !eights, NY. '::'

51. The Rand Corporation, “Reduce User’s Manual,” No. CP78, Santa Monica, CA,
1985. ™

52. Triolet, R., Irigoin, F., and Feautrier, P., *Direct Parallelization of Call State-
. ments,” Proceedings of the ACM SIGPLAN 88 Symposium on Compiler Construc- “W
tion, SIGPLAN No. 21, 7, July 1988, pp. 176-185. A"

53. University of California, UNIX User’s Manual, Reference Guide-4.2 Berkeley ."‘,‘
Software Distribution, Computer Science Division, University of California, Berkeley, N
Cx\, 1084, kl}

I"II:

R I R T R R N NN R R N R A A AN N

b b
| .:o.. .:z‘

e e von o0 A v ~ ry " o o 3 . R
St T ..."hf!‘."‘,»"u’\\".;".Q‘k_z'\ -.‘..v.'t5"3":?"20.‘."‘ m',‘..!".-'lhg“,,w.!.t'l “"."i%‘ln e Y A I e T A

